If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-5H^2+125
We move all terms to the left:
(H)-(-5H^2+125)=0
We get rid of parentheses
5H^2+H-125=0
a = 5; b = 1; c = -125;
Δ = b2-4ac
Δ = 12-4·5·(-125)
Δ = 2501
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2501}}{2*5}=\frac{-1-\sqrt{2501}}{10} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2501}}{2*5}=\frac{-1+\sqrt{2501}}{10} $
| 10x=24x-28 | | 7z-6=z+18 | | 20=2/7h+3/7h | | -3(4s-4)-12=-2(9s+4)-3 | | -5k-7=33 | | 2.3-q=4.1 | | (7.50×20)w=1,200 | | 7x-3/8=6x-5/10 | | 1c/3-2/3=7/3 | | 6(5a+8)=7(4a-8) | | 11-4+x=6+x | | 14n+2-8n=37 | | x+6-6(x-2)=0 | | 10n^2-8=0 | | /3(c-2)=7/3 | | 2x+1/5=7x-2/8 | | 7(3p−4)=4p+6 | | 10+(7•x)=6•5-x | | 4t2=64 | | 4–2t=2 | | 4t2=64 | | 1/3(c-2)=7/2 | | 3y+27=48 | | 0=-26.462x+10.002 | | (2n−9)−5=(−2.4n+4) | | -7x-40=-3x | | -6+m/3=-3 | | 1/3(c-20=7/3 | | 225+3.5x+150=2000 | | x^2-12.25=0 | | 13x+145=180 | | -4-5x=-29 |